

SpaceCube: Current Missions and Ongoing Platform Advancements

NOTE: Handout Version

Dave Petrick NASA/GSFC Code 587

9/3/2009

GSFC SpaceCube

- Small, light-weight, reconfigurable multi-processor platform for space flight applications demanding extreme processing capabilities
- Stackable architecture
- Based on Xilinx Virtex 4 FX60 FPGAs, 2 per processor card
- Successful flight demonstration on STS-125

Processor Card

2 Xilinx FPGAs, 2 Aeroflex FPGAs

1GB SDRAM, 1GB Flash

Mechanical: 7.5-lbs, 5"x5"x7" Power: 37W (STS-125 Application)

Flight Box

MAPLD 2009 - Session E

Current Tasks

- SpaceCube 1.0: RNS flight spare to ISS (Nov 09)
 - Platform for testing radiation mitigation techniques starting with Rad-Hard by Software (RHBS)
 - Collaborating with industry and universities
- SpaceCube 1.5: Sounding Rocket Avionics
 - DoD **O**perationally **R**esponsive **S**pace payload funding
 Feature Xilinx Virtex 5 FX100 with gigabit interfaces
- SpaceCube 2.0: Increased performance over SC1.X
 ESTO funding → Prototype FY10, Engineering Unit FY12
 - For missions requiring high data rates and/or onboard science data processing

MISSE-7 Overview

- Materials International Space Station Experiment
- Payload Lead: Naval Research Lab
- STS-129 Shuttle Atlantis, November 12, 2009

MISSE-7 SpaceCube

- Flight spare SpaceCube from HST SM4, STS-125
 - Re-engineered box for MISSE-7/ELC interface
 - Built adapter plate, custom harness, new software
 - Delivered box to NRL in 9 months!
- Test bed for radiation mitigation techniques
 - Start with "Radiation-Hardened by Software"
- Supports compressed file uploads
- Operations from a laptop

MISSE-7 SpaceCube

MISSE-7 SpaceCube

MISSE-7 SpaceCube Future Work

• Enjoy the Space Shuttle launch!!

- Conduct ops and analyze radiation data
- Improve RHBS algorithms and incorporate OS
- Collaboration with industry partners and universities
- Upload improved FPGA/SW designs

SpaceCube 1.5 Overview

- SpaceCube 1.5 Processor Card
 - Collaboration with DoD **O**perationally **R**esponsive **S**pace (ORS)
 - COTS components
 - Targets small-scale, responsive
 - Short-duration suborbital, near-space, and orbital flights
 - Features inherited from SpaceCube 1.0
 - 4" x 4" Form-Factor
 - Stackable Architecture
 - Legacy flight interfaces (RS-422/LVDS)
 - Power card compatibility
 - Bridge to SpaceCube 2.0
 - Transition to Xilinx Virtex-5 FPGA / PowerPC 440
 - "Plug and Play" Gigabit interfaces (SATA, Ethernet)
 - High-speed DDR2 SDRAM memories

SpaceCube 1.5: Processor Card

SpaceCube 1.5: SMART/ORS

- Small Rocket/Spacecraft Technologies (SMART)
 - Joint program between NASA and ORS
- Objectives
 - Develop faster, leaner, and more efficient approach to space flight
 - Maturation of miniaturized avionics for small launch vehicles, flight safety, and spacecraft applications
 - Reconfigurable payload structure for accommodating various subsystems
 - Demonstration of technologies applicable to future rocket balloon flights
- Series of sounding rocket flights
 - First launch: Summer 2010 on a Terrier Improved-Orion sounding rocket
- Micro-satellite platform with **SpaceCube 1.5** as payload avionics
 - Ingest data from
 - RocketCam
 - 2 x GigE Industrial Cameras
 - Inertial Measurement Unit (IMU)
 - GPS
 - Sensors (pressure, thermal, acceleration)
 - Cameras validate interfaces and document flight and deployment of parachute
 - Record data telemetry on two commercial SATA Solid State Drives (SSD)
 - Downlink reduced telemetry through transponder (10Mb/s)

SpaceCube 1.5: Status & Future Work

- Challenges:
 - Small Form Factor requires careful device selection and constrains I/O resources
 - Finding SATA solution (chose SATA IP Core)
- Improvements:
 - Compact/Rugged gigabit connectors capable of meeting ALL SATA specifications
- Status:
 - Completing schematic phase, initiating layout phase
 - FPGA/Software implementation of key interfaces proceeding on development boards

SpaceCube 2.0 Overview

Mission Unique High-speed

Flight Processor Comparison

	MIPS	Cost	Power	MIPS/W
MIL-STD-1750A	3	-	15W	0.2
RAD6000	35	\$250K	10-20W	2 .33 ¹
RAD750	< 500	\$200K	10-20W	30 ²
SpaceCube 1.0	3000	\$60K	5-15W	400 ³
SpaceCube 2.0	5000	\$75K	10-20W	500 ⁴

Notes:

1 – typical, 35 MIPS at 15 watts

2 – typical, 450 MIPS at 15 watts

3 – 3000 MIPS at 7.5 watts (measured)

4 – 5000 MIPS at 10 watts (calculated)

SpaceCube 2.0 Processor Interfaces

SpaceCube 2.0 Development Paths

Main Goals:

- Retain processing power of SpaceCube 1.0
- Add gigabit interfaces
- Improving overall reliability

SpaceCube On-Board Data Processing

On-Board HyperSpectral Data Processing IRAD --- Left: California Wildfire Scene, Center: On-Board Wildfire Detection and Temperature Characterization, Right: On-Board Product Generation for Direct Downlink to Emergency Services Personnel

Acronyms

- CDH: Command and Data Handling
- ELC: Express Logistics Carrier
- ESTO: Earth Science Technology Office
- FPGA: Field Programmable Gate Array
- IRAD: Internal Research and Design
- ISS: International Space Station
- MISSE: Materials ISS Experiment
- NRL: Naval Research Laboratory
- ORS: Operationally Responsive Space
- OS: Operating System
- PCI: Peripheral Component Interconnect
- PPC: PowerPC
- RHBS: Radiation-Hardened By Software
- RNS: Relative Navigation Sensors
- SATA: Serial Advanced Technology Attachment
- SEE: Single Event Effect
- TMR: Triple Module Redundancy